Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wen Pei, ${ }^{\text {a }}$ * Yong-Jiang Wang, ${ }^{\text {b }}$ Li Sun ${ }^{\text {a }}$ and Xiao-Bo Xiong ${ }^{\text {a }}$

${ }^{\text {a }}$ College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China

Correspondence e-mail: river0301@163.com

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.051$
$w R$ factor $=0.104$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-[4-(Dimethylamino)phenyl]-1-(phenylsulfonyl)-but-3-en-2-one

An E configuration is found about the $\mathrm{C}=\mathrm{C}$ double bond in the title molecule, $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}$. Evidence is found for significant conjugation in the $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NMe}_{2}$ residue.

Comment

1-Phenylsulfonyl-3-alken-2-ones attract the attention of organic chemists owing to their utility as asymmetric synthetic reagents (Wada et al., 1996), and as electron-deficient dienophiles, finding applications in asymmetric Diels-Alder chemistry (Pei, 1998). The title compound, (I), has been prepared and studied in order to obtain a better understanding of its stereochemistry. The molecular structure (Fig. 1 and Table 1) shows that an E configuration is found about the $\mathrm{C} 3=\mathrm{C} 4$ double bond. The torsion angles listed in Table 1 indicate that the dimethylamine group and its attached benzene ring are essentially coplanar. The $\mathrm{N} 1-\mathrm{C} 8$ bond distance of 1.359 (3) \AA is considerably shorter than the normal single $\mathrm{N}-\mathrm{C}$ bond of $1.43 \AA$ (Allen et al., 1987), indicating conjugation is this region of the molecule.

(I)

Experimental

The title compound was prepared according to the procedure of Wada et al. (1996). Diffraction quality crystals were obtained by slow evaporation of an ethanol solution of (I) at room temperature.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S} \\
& M_{r}=329.41 \\
& \text { Monoclinic, } P 2_{1_{1}} / n \\
& a=7.224(2) \AA \AA \\
& b=19.712(6) \AA \\
& c=12.177(5) \AA \\
& \beta=105.272(14)^{\circ} \\
& V=1672.7(10) \AA^{3} \\
& Z=4
\end{aligned}
$$

Received 26 September 2005 Accepted 24 October 2005 Online 27 October 2005

Data collection

Rigaku R-AXIS RAPID

 diffractometer
ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.960, T_{\text {max }}=0.967$
15968 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.104$
$S=1.01$
3834 reflections
233 parameters
H atoms treated by a mixture of independent and constrained refinement

3834 independent reflections 2183 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$

$$
R_{\mathrm{int}}=0.034
$$

$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-25 \rightarrow 25$
$l=-15 \rightarrow 15$

$$
w=1 /\left[0.0001 F_{\mathrm{o}}^{2}+3 \sigma\left(F_{\mathrm{o}}^{2}\right)+0.5\right] /
$$

$$
\left(4 F_{\mathrm{o}}^{2}\right)
$$

$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.39 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}$
Extinction correction:
(Larson, 1970)
Extinction coefficient: $2.8(3) \times 10^{2}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

S1-O1	$1.4301(13)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.359(3)$
S1-O2	$1.4339(16)$	$\mathrm{N} 1-\mathrm{C} 11$	$1.435(4)$
S1-C1	$1.768(2)$	$\mathrm{N} 1-\mathrm{C} 12$	$1.453(3)$
S1-C13	$1.757(2)$	$\mathrm{C} 31-\mathrm{C} 41$	$1.393(7)$
O3-C2	$1.186(4)$	$\mathrm{C} 32-\mathrm{C} 42$	$1.393(7)$
C8-N1-C11	$121.3(2)$	$\mathrm{C} 2-\mathrm{C} 31-\mathrm{C} 41$	$114.5(4)$
C8-N1-C12	$121.5(2)$	$\mathrm{C} 5-\mathrm{C} 41-\mathrm{C} 31$	$118.1(4)$
C11-N1-C12	$117.1(2)$		
C11-N1-C8-C7	$1.2(3)$	$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	$-175.2(2)$
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$-177.8(2)$	$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$5.7(3)$

Atoms C3 and C4 were found to be disordered over two positions, viz. C31 and C41, and C32 and C42, and were refined anisotropically with 50% site occupancy factors and equal $\mathrm{C}-\mathrm{C}$ bond distances of 1.393 (7) Å. The H atoms associated with this group were located in a difference Fourier map and were refined freely $[\mathrm{C}-\mathrm{H}=0.82$ (2)1.02 (2) Å]. The remaining H atoms were included in the riding-

Figure 1
View of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. Both disorder components are shown.
model approximation, with $\mathrm{C}-\mathrm{H}$ (aromatic) $=0.98 \AA, \mathrm{C}-$ $\mathrm{H}($ methylene $)=0.97 \AA$ and $\mathrm{C}-\mathrm{H}($ methyl $)=0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Burla, M., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Pei, W. (1998). Chem. J. Chin. Univ. 19, 402-404.
Rigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Wada, E., Pei, W., Yasuoka, H., Chin, U. \& Kanemasa, S. (1996). Tetrahedron, 52, 1205-1220.

